Correction: Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau
نویسندگان
چکیده
The Tibetan Plateau in Northwest China hosts a number of hot springs that represent a biodiversity hotspot for thermophiles, yet their diversity and relationship to environmental conditions are poorly explored in these habitats. In this study we investigated microbial diversity and community composition in 13 Tibetan hot springs with a wide range of temperatures (22.1-75°C) and other geochemical conditions by using the 16S rRNA gene pyrosequencing approach. Bacteria (10(8)-10(11) copy/g; 42 bacterial phyla) in Tibetan hot springs were more abundant and far more diverse than Archaea (10(7)-10(10) copy/g; 5 archaeal phyla). The dominant bacterial phyla systematically varied with temperature. Moderate temperatures (75-66°C) favored Aquificae, GAL35, and novel Bacteria, whereas low temperatures (60-22.1°C) selected for Deinococcus-Thermus, Cyanobacteria, and Chloroflexi. The relative abundance of Aquificae was correlated positively with temperature, but the abundances of Deinococcus-Thermus, Cyanobacteria, and Chloroflexi were negatively correlated with temperature. Cyanobacteria and Chloroflexi were abundant in Tibetan hot springs and their abundances were positively correlated at low temperatures (55-43°C) but negatively correlated at moderate temperatures (75-55°C). These correlation patterns suggest a complex physiological relationship between these two phyla. Most archaeal sequences were related to Crenarchaeota with only a few related to Euryarchaeota and Thaumarchaeota. Despite the fact that microbial composition in Tibetan hot springs was strongly shaped by temperature, microbial diversity (richness, evenness and Shannon diversity) was not significantly correlated with temperature change. The results of this study expand our current understanding of microbial ecology in Tibetan hot springs and provide a basis for a global comparison.
منابع مشابه
Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China
Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa t...
متن کاملBiodiversity of the oleaginous microorganisms in Tibetan Plateau
Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid dese...
متن کاملJ. Gen. Appl. Microbiol., 48, 211–222 (2002)
Dense microbial mats and/or streamers of various colors (white, yellow, pink, purple, orange, red, green, etc.) develop in neutral or alkaline hot springs as follows: The color is determined by interaction between microbes in hot springs and physicochemical factors such as temperature, pH, sulfur and light (Brock, 1978; Castenholz, 1988; Hanada et al., 1995; Hiraishi et al., 1999; Jørgensen and...
متن کاملMicrobial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis.
Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (∼100°C) spri...
متن کاملArchaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines.
The microbial diversity was investigated in sediments of six acidic to circumneutral hot springs (Temperature: 60-92 °C, pH 3.72-6.58) in the Philippines using an integrated approach that included geochemistry and 16S rRNA gene pyrosequencing. Both bacterial and archaeal abundances were lower in high-temperature springs than in moderate-temperature ones. Overall, the archaeal community consiste...
متن کامل